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Limits and Bounds for Divided

Differences on a Jordan Curve

in the Complex Domain*

by

J.H. Ourtiss

University of Miami

1. Introduction. Lot 8n41 ={zl, 3z 2 ,...,zn41 } be a set of n+l

oomplex numbers and let f be a function on a set containing 8n 1 to

the ocomplex numbers. The divided difference dn = dn(fjl1, a,...,)n+1 )

of order n formed for the function f in the points 8n~l is defined in

a reoursive manner as follows:

d, dl(flzl,z2 ) f(z) - f(zn)
Zi - Z

a d2(fjzlz 2 #z3) dl(flzl,z a ) - dl(f153 ,3 S )
z- z3

dn , dn(fIzlz2,...Pzn+l )

dnl(fzllZ,.. .,zn)- dn-l(f znl, 2.

zI - Zn+l

The definition requires further discussion when the points in an 1 arse

not all distinct. We shall suppose that they are distinct unless pro-

*This research was supported by the United States Air Force through

the Air Force Office of Scientific Research of the Air Research and

Development Command, under Contract No. AF 49(638) - 862.

*#We use the words "points" and "numbers" interchangeably in referring

to the arguments in divided differences. This follows the practice

in interpolation theory. It is consistent within this terminology

to speak of "coincident points" z.



vision is explicitly made for coinoidences.

It can be proved by induction [1, p.15] that if

kIn+l(Z) = (z-zl)(z-z2 ) ... (-znl)t

then n+l f(zk)

(1.1) dn = C.&n4l(zk)

where the prime denotes differentiation of CJn+l(t) with respect to a.

This formula shows that dn is a symmetric function of zl, z2 , ... n41

The divided differences of a function given on the real line play

a prominent role in the mathematics of computation. Their counterparts

in the complex plane have appcared in various classical studies of ap-

proximation by complex polynomials. The formal algebra of complex di-

vided differences is of course much the same as for the real case, but

the analytical properties of complex divided differences, such as as-

ymptotic behavior and representability by integrals, are in some oases

quite different. It would appear that these analytical properties have

not received much attention in the literature, although some of them

seem- interesting.

A primary motivation for the present paper was the need to estab-

lish that under certain smoothness hypotheses on a function f given on

a Jordan curve C, the divided difference of f of a fixed order formed

in points on 0 are uniformly bounded in m3dulus for all choice* of the

points. This property was required in a study of complex interpolation

in random points, to be published elsewhere [2]. The existence of the

bound is proved in Section 2 below for the case in which 0 is the unit

circle. The extension to more general Jordan curves appears in Section

3. In Section 4, the asyntotic behavior of successive divided differ-

enoes of order n formed in nfl points on a Jordan curve, n = 1, 2, ...

which in their totality become everywhere dense in a certain way on
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the curve, is investigated. It is found that the behavior to be ox-

pected in oases important in the theory of complex interpolation is

that the n-tk divided differenoe multiplied by the (n+l)-tk power of

the transfinite diameter, or capacity, of the curve 0 in question ap-

preaches the limit SO f da / (2f'ri).

As was mentioned above, the iapetus for this study came from a

particular application. It is hoped that the results may turn out to

be useful in other directions. However, the general spirit in whik

this paper is written is that of interest in the subject for itself

alone, and the possible applications will not be considered further.

2. An loper bound for the modulus of a divided differenoe

formed on the unit oiroe. If the numbers sk are all real numbers, and

if f is continuous on a closed interval T of the real line coentaining

on+, and possesses an n-tk derivative f(n) at eaoh poiPt of the oorre-

spending open interval I, then by elementary calculus [1, p.24] it can

be shown that there exists a number x. in I such that dn a f(nxo)/nj.

Thus if I f(n)I is uniformly bounded everywhere on Il aso also io

Idni for all choices of 8n+l on T. Againwith real points 8 n.l , if

f(n-1) is absolutely oontinueus [3, pp.364 f.] on T, then the iterated

integral on the right side of the following formula (in which we define

Zn+2 as meaning zl) ,

(2-1) dn(f I il, fee " nl)

a- 00 • "© fI2 +  Y)(t; -") dyl dyg ... ayrn

has meaning for all okloes of n+l in whiok the points zj are dis-

tinct, and indeed can be used to extend the definition of dn to oases

involving confluent points. It is easily shown by induction that the



-4-

formula is true [1, p p. 17-18] Thus it follows with f(U.1) abo-

lutely continuous and If (n)l whore It exists, uniformly bounded en

I, that dnj i aleso uniformly bounded for all choice* of 8 on

such at completion of the definition of dn through (2.1) is possible.

If M is the least upper bound of If(n)J on I, then Ig If / nt
The formula (2.1) is no longer generally valid when the numbers

are not all real, and the derivation of a bound for Id n

terms of a given bound for jf(I1) j is not so readily acoompliehed.

In the remainder of the section we shall consider this problem in the

case in which 8 n l lies on the unit circle in the complex plans.

In the development, we shall use a complex-variable type of inter-

pretation of the derivatives of a function g given on the circle

o : IsI a 1. The symbol g(l)(z 1 ) will moan

1US d(gz#,,) W i g(s) - g(Z.) , I l, =11" 1,

provided of course that the limit oxists. Higher derivatives 9 k ) are

to be dofined recursively. The circle 0 can be parametrized in a

one-to-one manner by the equation z a oie , with d 4 O'd all' ,

where oC is chosen arbitrarily. If this is done, then

The chiof result is this:

m 2.1 Let the function f be irivenP 0! Is 1 t11ether 311th
_. .m~t.L nl f1) fa) (n-1,)

itfit n-l derivative f(l), f(.) . f . Lot the points

n+,l on a and be distinct. Then if f(n-1) satisfies the Leoschitz

condition:

I f(n-1)(a) _ 1(n-1) tit 0 t

for all A te O, it follows that
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RIaforml for all suoh 8n+lP where An i$ the l0-2t u2er o bod of
Inz)I, Ii-

The symbol ["in (2.2) refers te the Gamma Function.

The hypothesis on f(n-1) ts equivalent to requiring that f(n.1)

be absolutely continuous on jzi - 1, and that it therefore be the

indefinIte integral of a derivative f(n) existing everywhere on Isi = j

with the possible exception of a set of Lebesgue measure zero. More-

over the implioation Is that 1f(n)1 I on the set where It exists, in

bounded and its least upper bound An does not exceed A.
Our proof depends on integral representations, and it is impor-

tant to be explicit about the integral calculus to be used.

Oonsider tw, points e3 and e on the unit circle. The

oemplex line integral of a function g given on the unit circle ex-

tended ever either one of the two aroe of the circle joining these

points, directed LM i A  3e4 is to be defined as a Lebesgue

integral with respect to the parameter 9 in the parametrisation

* = el  . That isp if A is the chosen directed arc, then

(2.3) l = fg(Sie) iied .

If g Is continuous in a neighborhood of e then

A

The notation for the integral on the right side of (2.3) is ambiguous

in that it does not indicate which one of the two possible direoted

arcs A is being integrated over. However in the sequel we shall be



dealing only with complex line integrals en j 1 w 1 which are Inds-

pendent of the path of integration. Such an integral extended ever

either arc directed ft.m so to sl, Jlal a Izt N 1, will be denoted by

)g()du. If the two &ros joining so to sl are of equal length,

then 02 a ce1  '*r, so the variation of 0 in (2.3) is ever a closed

Inteval of length It of which one ondpoint is o<2 6 If the two paths

are not of equal length, then the shorter one corresponds under

a U e O  to an interval of values of 9 of which one ondpoint is (2

and the other one, say ol, is such that z3 z e1 U eo' ad

jo -,I - e. Tr . (For example, if and are restricted to

the interval [0,121'] and if oe >C. 0<2 - , then we take

a,- arr+1xo .)
We shall now drop the parentheses around superscripts indi-

cating derivatives of funotion% but it is to be understood that super-

scripts can also be exponents when the context requires, as in (a - 82)k .

In the case of divided differenoes, a derivative superscript will al-

ways 'indicate a partial derivative with respect to the first argument

when the notation in the first paragraph of the Introduction is being

used. That is,

k k d~jlz#O~mldm k( a~l du ,...,,VO*Pl)

The proof depends on two lemmas, of which the first is as

follows.

2.1 Let the function f gief- 0 : jz) - 1 be such that Its

(n-l)st derivative exiots everywhere on 0 and is Lbsolutely ontinuous-

Then zl h-l h

(2.5) dh- (f I 
f (t)dt(2.s) ~~~(z el :~'2 Z- 2P
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loll It ., a t 1, u f 2*, h M

The intearal is indenendent of the 2ath of interatiM en 0.

The absolute continuity of fn 1 implies the absolute continuity

of fo flI f8o s.e fn-2. and so implies that each of theefunotions

including fn-1 to the indefinite integral of its derivative.

In the oaseh l, with 1a. a , a 3 .e2M0P

82 f,(t) dt = ot f'(e 6 ) i dO
X1 - 82  l - sa

f(ul) - f(z2)

aI - 3

J ±1tf(~ i~dae f,1 (6e0 ) ileO A8

'I  - 33

The second and fourth members of the equation show that whether

G1 e or a1a2, the integral is independent of the path. Thus

the Lemma is true for h - 1.

Suppose now that (2.5) gives a valid representation of dl,1k

i4h, with the integral independent of the path and x, g z2 . Then

using (2.4), we have after a brief computation

(3.6) dlk = dl kl (5 52kftl -k' t. .klf(t) dt
)f )k51

Because of the absolute continuity of fk, integration by parts to

valid in the integral in (2.6), with fk to be differentiated and

(t - ga)kl to be integrated with respect to t. We thereby immediately

obtain (2.5) with h a k + 1, and 1he integral is again independent of
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the path. The premises of the Induction are true for k l l so this

establishes the Lemma.

a .a Let the function g be given 9t all points on Im - 1I

the nossible ezoeDtion of a set of Lobesiue moeaure zero; e

Ig(m)I!M here defined on I9 = 1, ad l g be such that
5k(dl,,s) "'S:(t - 82)k g(t)dt, 151l = '1= 1, kZ o,

is indenendent of the oath of integration.

MM., • A4
(2,7 'kd (1, - 4s tn E- -" k".ppgo

When k w O, the right side of (.?) reduce@ to 1/2o.

For the proof, we make the shorter arc joining s e e and s, s 11

(or either of the two ares if they are equal in length) oerreeped

under a = •10 to a 9- interval fcez,L'J or [o',%a] , where '

is suoh that ", C a sndI e- 04'I-fl' • Thus

f00 ( 61 eIOC) k g(.1 10 e1"9

for the cease k = 0, we use the inequality Isin -IS G ,

- 11/a .6 6 fl'/a , which is merely an expression of the fact that

sin6 to convex w.i [O,I/2J. We also use the Identity e - s 61 =

21 *1*0/' 6in004- A)/23 Then sinceI1,,' -oem JI /2Lri, it

feollows that I'. - a' = /a 2 in [ (04, - az)/2a]Iz-(a'r)) *2 (o 'Ova/

low Izlo( , 52) .!; if' - I , so the inequality (2.7) follow

at once fr k f) .

For k 1 Ne have (recalling the restriction onk. -X2l ),
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(8.8) I k(Al,-a) 1 42k j Join

f Z4

- ~ls~sinkO-44! del

We make the substitution 3 z1 -@4/3 in the integral and lot

tale' " 3 1 /2 9V12, By examination of the various es@ 0oro-

spending to k even or odd and 011sa( j o°oe we find that the right-

hand member of (2.8) is always equal to

M o td U s(1).
, nk+1 I{

Inspection of its derivative shws that 8(j) increases steadily with

- on the interval OA 1i6/a . The value of 8()Y/2) is given by the

well known formula

fI/a sinkA r(
0 M

Thus

lIk (zl' z)j I M (~ -

as was to be proved.

low let g in Lemma 2.3 be fn and U be , , where f is

the function appearing in the Theorem. The two lemmas establish that

(3.9) dl n+l(fIZl,Ua) = y al ' 02r(+ ) " " "
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As a function of a,, dl n l is continuous for zlo z and uniformly

bounded in modulus. Qonsider next din-2(fIzl,z2) as a function of

a, This function has a continuous derivative for z;g s, which

is moreover uniformly bounded in modulus. Therefore this function is

absolutely continuous in a, for a, on any closed arc of the unit circle

not ontaining &2 . But the uniform boundedness of Idl n ' 1 I implies

that dln2(flz l ,z2 ) is of uniformly bounded variation in zl on the

entire unit circle with the point z2 deleted. By a well-known theorem

(3,p.372,ix.6j it follows that as tj approaches zz from either side,

dl n 1 approaches a limit; and if the limit is the same for approach

from either side, then when the definition of d n'2 is completed by

this limit at z* a 'a the function din- 2 will be an absolutely con-

tinuous function for all z1 on 21 1. To investigate the limit,

we write (2.5) in the form

( o )i" A
[ 4 n( iG-2 .. ..0(2. n - ) dn

dn (sin r- ) n-(21 n

The limit as zraz, e"lo 8 , of the expression in square brackets

can be evaluated by L'Hospital's rule used with (2.4) and with the

fact that fn-l is continuous. We find that for z1 approaching z2

on either side, there is the unique limit

n-2 n-l
lim dl(f lz ,=2 f (za)

zl-*WZ n - 1

n-2
Thus with proper oompletion of the definition of dl at z 1 * 92,

this function is an absolutely continuous function of z, for all

I111 = 1. Similarly we can complete the definition of dlh(f I i,'2)
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for h U n-3# n-4, ... , , so that the resulting function is in each

case an absolutely continuous function of cl for all I 1 = 1. e

assume henoeforth without ohange in notation that for sach relevant

value Of h, the oroper extension of the definition ef dh at sl =
has been made.

What this establishes is that the completed first order divided

differenoe dl(fl zl,za), as a function of zl, together with its first

n-2 partial derivatives with respect to z1 , have the same smoothness

and integrability properties as does f and its first n-l derivatives,

That is to say, d1 , d 3l, ... , dln-2 are absolutely continuous funotiesr

of a1 and moreover the derivative of dln-2 , where it exists, is uni-

formly bounded in modulus.

The absolute continuity of the derivatives permits the inductive

argument which we used to establish (2.5) to be used again to prove

t h a t h - 1 = h - I

h-lh- h-

z (t.- Z3) h-l dl (flt,s2 )dt

- f(z - 3) h

Z1-i 2 1, 1 '21 , # Z3, h W 1,2,..., n-l.
n-2

By (3.9) and Lemma 2.2, d n
2  as a function of 21 is uniformly

bounded in modulus. (It is not important at the moment to know how

the bound depends on za and z3.) The definition of d n -3 P d2 n- 4 ,

.. , da can now be completed by continuity at zl a z3 so that in each

case the resulting function of z 1 is absolutely continuous on I211 a 1.

Again we assume without change of notation that the proper extensions

have been made.
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Proeeding in this way, we establish the ohain of equations

n-k f4 k+1(t - d) n fk d n"k+ "I t, 2,... k)dtS(2. 1o) dk +1 k :

k 1, , .. , n
n,

in which dnO . dn, don  f . Theorem 2.1 now oan be proved by back

substitution into (2.10), beginning with (2.9) and using Lemma 2.2

at eaoh stage. Thus to start with, at least for al p s8 and z, w a39

nA

1 [(,
similarly,

as stated in the conolusion of the Theorem.

It is olear from the proof that under he hypotheses of the

Theorem on f , it is possible to extend or oomplete the definition

ef dn by oontinuity so as to admit point sets 8 n+1 in whiob ooin-

oidenoes ooour, and then (2.2) will still be valid. To avoid further
oomplioating the disoussion, we shall not explore this question under



- 13-

the hypothesis of Theorem 2.1 on f, which was chosen as being a natu-

ral one for boundedness ofldni in the case of distinot points. (The

boundedness of dl =l(s 1) - f(a2)Ifl - Z8l is equv.alent to a

Lipsohits condition on f.)

The method of proof with only slight modifications an be used

to establish the following result:

22.2 Under the hynothe9s- of Theorem 8.1 aa.geni1jt f, W

with the added hynothesie that f(n) is contnuous on sooe open arc

2L it) a 1 containing the point l, the following eouation oomnletes

the definition of dn by oontinuity for the case in which all the

fl 8 n l ooinocide at zl:

(n)
(2.11) 4 (f I alZ l'"". l) = n!

L f(n) is everywhere oontinuos on Jz I 1, then (2.3) jgIj

after 2roer comoletion of the definition of dn for all ohoices of

8n. without restrictions as to coinoidenoes.

.We conclude this section with two oomments. In the first place

it is clear that by. repeated back -substitution into (2.10), a single

formula for dn in terms of 0 involving repeated integration can

be written out. It would be somewhat similar in appearance to a

variant of (2.1) which appears in C4,p.18,ex.7).

In the second plaoe, it may be that for na2 the bound in (2.2)

can be improved. For n a 1 it is the best bound pesible, as can be

seen from this trivial example: Let f be real and let its graph over

a period in the (Af(.ii))-plane be a line segment joining (0,0) to

(ff,I1) and another line segment joining (Ii,I1) to (21)o). For this

function the maximum of d1 isfl/2, the least upper bound of f W' is

one, and the right side of (2.2) is (1r/2).l, which is as small as it
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oan be. However the general bound was derived through Lemma 2. in

whioh the two points z, and z2 were plaoed at opposite ends of a

diameter to obtain the numerical appraisal. Such wide-apart spacing

is of course not possible for the case of three or more points on the

unit circle. The bound given by (2.1) in the real case under the hy-

potheso of Theorem 2.1 is An/n, which is much smaller than that in

(2.9). It might be best to try to obtain a bound in terms of the

Lipsohitz oonstant A rather than the derivative bound An.

3. Boundedness of the modulus of a divided difference formed on

a general Jordan -urve. A generalization of Theorem 3.1 to the case

in whioh the unit circle is replaced by a more general Jordan curve is

not hard to derive. In doing so, for simplioity we shall not try to

keep track of the structure of the upper bound, and shall suppress

various details in the proof.

A Jordan curve is homeomorphio to a oirole. It can be represented

by a parametric equation .* b(9), wheresis oontinuoum in the real

variable 9 with period Or, and where for each given point z on the

curve, any two solutions of z w 0(8) differ by an integral multiple

of 21. Our considerations here will be restricted to Jordan curves

such that the first derivative dV/dGw $(6) exists for allO and

is oontinuous, and W(6) p 0 for all . Buch a Jordan ourve will

be said to be "admissible". (Presumably in what follows the defini-

tion of admissibility can be slightly relaxed.)

k 3.1 If za 0'(0) is a parametric eauation of an admissible

Jordan curve, then there exist numbers m and M, 0-4 m<M, such that

I Ie~a Vj )forall _1 and -  eiv

for all and0
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The divided difference appearing in the above inequality is to be

interpreted as meaning '(62)/ieiG2 when O1 -2

The existence of an upper bound M follows from Lemma 2.2 with

k= 0 and g(e i ) n W(S) /ie • The existenoe of the lower bound can

be established by an elementary indirect argument which we omit*.

As in the unit circle case, it is convenient to interpret the de-

rivatives of a function on a Jordan curve to the complex numbers as

limits of oomplex-variable differenoe quotients. Speoifioally for any

function g given on a Jordan curve 0, the symbol g'(z 1 ) means lim

d(g l z, zl), z and z, on 0. and higher derivatives are to be defined

reoursively. If 0 is admissible, then

9'(z) d .11

Integrals are to be defined as in (8.3) with ie
io in that formula re-

placed by I(). With this replacement and with ei°(1 replaced by

'(e1), (2.4) is valid. An integral over 0 with limits of integration

z1 and Z2 whioh is independent of the path will be written as

s l  g(z)dz. The "notation implies of course that the aro over which
33

the integration takes place is directed from &a to zl. The derivatives

of divided differences are always partials with respect to the first

apparent argument.

The generalization of Theorem 2.1 is as follows:

e 3.1. Let tae function f be given on an admissible Jordan curve 0,

together with f 1 , f , fn-l Le f n-1 satisfy the Lipsohitz

condition

*Various related but deeper results will be found in [5, Seotion2.
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for all z ad Le. t the ool ntL Sn+1 f i, Sa,... , n+ 19t l on

0 and be distinct. Then there exists a constant V deoending ont1 on

nA, and 0, and indeendent of 8n9.l such that I dn(f IlS2,...Zn+l) I

The proof starts with a generalization of Lemma 2.1.

3.2. Let the funotion f, liven on an admissible Jordan surve 0,

be suoh that its (n-l)-th derivative exists everrher2 on 0 and to ab.

selutely continuous as a funotion of 0, z mt(9). Te

h-1 (t - Z) h-1 h(t)dt
d i (f Il ) - ) P

LOX 21 adA '2 o% Of '1 3 , h 1, 21, *.., n, and the integral i

indeoendent of the Rath of integration on 0.

The argument used to establish Lemma 2.1 carries over to Lemma

3.2 with only minor changes, and will not be restated here.

3.3 Let the function G be given on the admissible Jordan ourve

0 with the oosible exceotton of a set of Lebesgue measure zere; ltj

101 be bounded on O. and be such that

Tklz1-z2) v Z(t - Z2)k (t)dt

is independent of the Dath of Integration on 0 for ll al j s2 pa 0.

Then for each k, k w 0,1,...,, there exists a constant Uk, ggengi

only 2G and 0 , and such tha

( , -

for all zIand za 2n O, i z2

The Lebesgue measure in the theorem means measure on the 0- line
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after the transformation t-l: Z,.

To prove this lemma, we let x= 1 0(),, 3 . S), t

and write

(3.1) ik __

k~l ( oe iG ik iG
Sice,1  iaea (o -. a g(e )ie do

(( - aW - e k

where k

(3.2) g(e )ie G(*(G))J -t-I# Lora . I (

By Lemma 3.1, the quantities in the square brackets in (3.1) and

(3.2) are both uniformly bounded in modulus for allO6,04, and

9; t 'Dl p . -For any fixedoc, g(ei) as given by (3.2) is integra-

ble, and its modulus is uniformly bounded for all 0e and 0c2 . The

integral in (3.1), considered as an integral over an arc of the unit

circle, is independent of the path of integration. Thus the hypothe-

ses of Lemma 2.2 are satisfied by g as given by (3.2). The truth of

Lemma 3.3 now follows immediately.

Theorem 3.1 can now be proved by the use of Lemmas 3.2 and 3.3

in the same way that Theorem 2.1 was proved. The hypotheses on f and

0 imply that f(e ) is an absolutely continuous function of es and

of 6 , and that its derivative with respect toO(), where it exists,

is uniformly bounded in modulus. The same is true for its derivative

with respect to 0 . (These facts tollow from the existence of numbers

X1 and X such that with z = eie I
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n- l 1 ~ ---

Here we used Lemma 3.1 in passing from the second member to the third

member of the chain.) The functions f, ft , fn- are also bo-

lutely continuous and have uniformly bounded derivatives.

We can now re-establish the recursion formulas (2.10), which look

exactly the same as before and so will not be repeated here. The inte-

grals in (2.10) are of course now complex line integrals over 0. There-

after by back-substitution, using Lemma 3.3 at each stage, we establish

the existence of the bound for I d. 1.
The analogous generalization of Theorem 2.2 is also valid. The

proper definition of dn for confluent points is again given by (;.11).

It is worth noting that what gives simplicity to our results and mini-

mizes the restrictions on 0 is the complex-variable type of definition

which we are using for derivatives of functions given on 0.

4. Some amatotio Drooerties of divIded lferenoes formed on a

Jordan curve. In this section we shall be considering an infinite

sequence of divided differences dl(fzll, z12 ), d2(fjz 2lza2,s 23), . . ,

dn(fjmnl, zn,...,znn~l), . . * , formed for a function f given on a

Jordan curve 0 in the z-plane. Do there exist sequences of point sets

8n#l a{ nl' zn2 ... , zn,n#.l ,n , 2,... such that Aim d

exists for all functions f belonging to an interestingly wide class;

and if so, what is this limit?

Let D be the region interior to the curve 0, let K be the unlim-

ited region exterior to 0, and let D be DyO. There exists an analytic

function
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(4.1) , 7(w) = ow + 00 + 01 +  + " " 0

univalent for I w I > 1 , whioh maps I w I"'1 oonformally onto K

so that the points at infinity in the z-plane and w-plane correspond.

According to the Ogood- Taylor-Oaratheodory Theorem, %(w) can be ex-

tended in a continuous and one-to-one manner onto I w= 1, and

S(ed8) -=(9) then gives a parametric equation for 0 of the type con-

sidered above in Section 3. The number c is called the transfinite

diameter (Robins' oonstant, capacity) of C.

If a function f is analytic on 0, it is also analytic in a region

(perhaps multiply connected) which contains 0 in its interior. Let

w a Re in (4.1). There is a largest value of R, say /D>i, Luoh

that f is analytic at every point of the intersection of OVK with

the region interior to the Jordan curve Cp: z X(Feio), o'O% air.

(See f6, p.79j.) A curve such as 0 is called a level curve of the

map given by (4.1).

With znk =Z(e lnk 0-0 nk 2 Tr let Nn(9) be the number

of elements of the set fOnl, On,2, ... ,n,n I falling into the

closed interval [0, 9] . The numbers 0nk I k = 1, ..., n+l, n a 1,2,...

are said to be equidistributed on[O,2fr7if li'r Nn(0)/(n+l) ./1?';

and when this happens, the corresponding sequence of point sets 8 11

n = 1,8,..., is said to be equidistributed on 0.

Our first result is as follows:

Theorem 4.1 Let f be analytic on D and let the sequence (Sn 1  k3.

eauidistributed on 0. Let p be the largest value of I w in the man

(4.1) such that f is analytic interior to the level curve Ca. Then

for any R, 1 -C Rt, there exists a constant M depending on f, R, and
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0, butnot-on n, such tha t

dn~tiono ... pon A+,

Th ~n 1 o~
lim. a a 0o

To prove this, we use the formula [4, p.11)

(4.2) dn t -) d t ' O 4Rc P '

where Wn+ (2) = (z - nl)(s - n2) ... (z - Bn,n+l) • This formula

san be used to complete the definition of dn by oontinuity for the ease

of oonfluent points znk . We then refer to a olasioal result of

L. rej or 7 J,([6, pp. 167 f] IL f Sn+ 1 is eidis tributed on a

Jordan ouve 0,

uniformly for z on any closed subset of X. This implies that if s lies

on OR and R1 is sush that l 1'R-R, then for all n suffioiently large,

n+l 1

(4+l(z) R

Letting MR be the maximum of J(a) I on oR, and LR be the length of

OR, we appraise (4.2) as follows:

MR1

and the theorem follows from this.
Theorem 4.2 Lot 0 be reotifiable, let f be analytic on 0,

let 8n+l be the transform under (4.1) of n4l distinct voints ecually
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apc j On w

(4.4) ii. a' 1du * f(t)dt

This is consistent with Theorem 4.1, because the sequence (Sn 1

in Theorem 4.2 is equidistributed and the integral in (4.4) would be

zero if f were analytic on

To prove the theorem we use a generalization of (4.2)p

(4.5) dna1+f -%)d
-- 5 OR  I n~ jTff

which is easily establashed by the oaloulus of residues. Here OR,

R 1N 1, is a level curve of (4.1) and 00 is a suitably chosen reoti-

flable curve lying in D. The curves OR  aad 01 are chosen so that

f is analytic on the closed annular region bounded by OR and 01.

Integration on 0' is in the opposite sense to that on OR @

The appraisal given by (4.3) is valid for the first integral in

(4.5), and it shows that this integral vanishes in the limit. The

foll6wing result of the author [8] is available for the second integral:

From the hypotheses of Theolem 4.2 2a 0 id 8 n.Il i follows that

04m (C4n+l(z) / nel . -1 uniformly for z on any closed subset of

D. This implies that

n -60 4n+l( U dt

n+l

fat f(t)dt = aim f(t)dt

which compl~etes the proof.



- 22 -

Generalizations of the above theorems to the case in which D is

replaced by a finite number of mutually exterior Jordan regions can be

developed by the methods to be found in Walsh's book [6,Ohap.VIj.

The results from which the above two theorems are derived were

originally established in studying the oonvergenoe of sequences of

polynomials found by interpolation to the function f on 0. Let

Ln+,(g) = Ln.l(f;tI8n+l) be the (unique) polynomial in s of degree

at most n which is determined by the oondition that it shall ooinoide

with f(z) at each of the points 8n+l, assumed to be distinct. Then

from the standard formula

n 1 nk)

it is seen by comparison with (1.1) that

(4.6) Ln1l(g;d8.# ) a Qjn)l(OC)dn(flznl ... ,sn,n+l)

where f(s) W g(t)/ (- z). The following result of the author [81,9J

is relevant: Let the curve 0 be such that X. (w) is non-vanishing

and of bounded variation for 1w I w 1. Let g be bounded and lnte-

arable In the sense of Riemann on C. Let the points 8 nl be-the

transforms under (4.1) of distinct points eoually soaced on the unit

ci rcle. Then

Lim L e(gt Is 1 J .lz). dt

n -ho n+l1 n

uniformly for o on any olosed subset of D.

We now write (4.6) in the form

0nl = n.l 1 f V(4.7) o dn = - -&-L nfl 1 (g;OC.Sn I )J •
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If Od to a fixed point of D and f is bounded and Riemsnn integrable

on 0, then so is g and oonversely. We reoall that -Onl(So/O n~ l

tends to unity at each point of D as n beoomes infinite. It fol-

lows from these facts that the limiting value of (4.7) is

lim o n+1 - jn L.dt3 fi f(t)dt

We summarize formally:

4.3 If the points Sn +1 are transforms unade (4.1) g

dlstinct noints equally soaoed on the unit oirole, and if 0 IsLsuch

hat %.' ts non-vanishing and of bounded variation for 1w I 1, an

IL f is bounded and integrable in the sense of RBemann on 0, the

-m 0 n+l =  f(t)dt
n U
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